Shared Autonomy via Deep Reinforcement Learning
نویسندگان
چکیده
In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user’s policy given their goal, and the set of possible goals the user might target, which limits their application to real-world scenarios. We propose a deep reinforcement learning framework for model-free shared autonomy that lifts these assumptions. We use human-in-the-loop reinforcement learning with neural network function approximation to learn an end-toend mapping from environmental observation and user input to agent action, with task reward as the only form of supervision. Controlled studies with users (n = 16) and synthetic pilots playing a video game and flying a real quadrotor demonstrate the ability of our algorithm to assist users with real-time control tasks in which the agent cannot directly access the user’s private information through observations, but receives a reward signal and user input that both depend on the user’s intent. The agent learns to assist the user without access to this private information, implicitly inferring it from the user’s input. This allows the assisted user to complete the task more effectively than the user or an autonomous agent could on their own. This paper is a proof of concept that illustrates the potential for deep reinforcement learning to enable flexible and practical assistive systems.
منابع مشابه
Deep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملGeneralization Tower Network: A Novel Deep Neural Network Architecture for Multi-Task Learning
Deep learning (DL) advances state-of-the-art reinforcement learning (RL), by incorporating deep neural networks in learning representations from the input to RL. However, the conventional deep neural network architecture is limited in learning representations for multi-task RL (MT-RL), as multiple tasks can refer to different kinds of representations. In this paper, we thus propose a novel deep...
متن کاملAction Branching Architectures for Deep Reinforcement Learning
Discrete-action algorithms have been central to numerous recent successes of deep reinforcement learning. However, applying these algorithms to high-dimensional action tasks requires tackling the combinatorial increase of the number of possible actions with the number of action dimensions. This problem is further exacerbated for continuous-action tasks that require fine control of actions via d...
متن کاملLearning to Navigate by Growing Deep Networks
Adaptability is central to autonomy. Intuitively, for high-dimensional learning problems such as navigating based on vision, internal models with higher complexity allow to accurately encode the information available. However, most learning methods rely on models with a fixed structure and complexity. In this paper, we present a self-supervised framework for robots to learn to navigate, without...
متن کاملMachine Learning Models to Enhance the Science of Cognitive Autonomy
Intelligent Autonomous Systems (IAS) are highly cognitive, reflective, multitask-able, and effective in knowledge discovery. Examples of IAS include software systems that are capable of automatic reconfiguration, autonomous vehicles, network of sensors with reconfigurable sensory platforms, and an unmanned aerial vehicle (UAV) respecting privacy by deciding to turn off its camera when pointing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.01744 شماره
صفحات -
تاریخ انتشار 2018